Шпоры по ТВ
|
Характеристика методов многомерного анализа, (компонентный анализ, факторный анализ, кластер-анализ(классификация без обучения). Дискриминантный анализ (классификация с обучением. Канонические корреляции. Множественный ковариационный анализ).
Реальные процессы зависят от параметров, их характеристик, поэтому возникает необходимость в применении мер, методов статистического анализа.
Методы МСА следует рассматривать, как логическое продолжение методов ТВ и МС. Принципиальное различие состоит в учете более 3-х факторов.
Методы МСА базируются на представлении информации в многомерном пространстве и позволяют определить латентные зак-ти, сущ-ие объективно.
Методы:
— моделирования и первичной обработки данных
— анализа и построения зависимости
— классификация и снижение зависимости размерности
50. Особенности статистического анализа количественных и качественных показателей.
Методы шкалирования при обработке качественных признаков.
Основной задачей статистического анализа является оценка связи признаков м/у собой. Необходимо измерить признаки, в гуманитарных исследованиях более сложны, т.к. они касаются измерения не только количественных, но и качественных признаков.
Суть статистических методов – анализ чисел как таковых, а не истинных значений некоторого признака.
Если количественные показатели можно, то для качественных показателей можно экспертным путем оценить степень сходства или различия м/у парами объектов.
Объекты отражают в некотором многомерном пространстве, где каждая точка – это объект, а координаты – признаки.
Для этого используют методы многомерного шкалирования.
— матрица парных расстояний (количественный признак)
— матрица парных отклонений (качественный признак)
По матрицам изучается степень сходства и различия.
51. Проблема размерностей в многомерных методах исследования.
Метод МСА базируется на представлении данных в многомерном признаковом пространстве размерностью, равной числу признака. При этом исследователь часто сталкивается с понятием размерности.
В общем случае изучается n-мерное эвклидово пространство. При n>3 все задачи решаются только логически и алгебраически (n>>m) (m=2-3). Для этого обычно стараются снизить размерность изучаемого пространства без видимых потерь информации.
Основные предпосылки перехода к производству меньшей размерности.
1.дублирование информации
2.ненормативность признаков
3.возможность агрегирования (простого или взвешенного суммирования)
Основной минус МСА: статистические методы оценивания и сравнения основываются только на многомерном нормальном законе раск-ния.
43. Критерий согласия
Проверка гипотезы о предполагаемом законе неизвестного распределения производится так же, как и проверка гипотезы о параметрах распределения, т. е. при помощи специально подобранной случайной величины — критерия согласия.
Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.
Прикольно. А я чёто не дадумался шпоры у себя выложить..
Молодцы!