Понедельник, Июль 5th, 2010

Структуры и алгоритмы обработки данных

Совершенно очевидно, что других способов убыстрения поиска не существует, если, конечно, нет еще какой-либо информации о данных, среди которых идет поиск. Хорошо известно, что поиск можно сделать значительно более эффективным, если данные будут упорядочены. Вообразите себе телефонный справочник, в котором фамилии не будут расположены по порядку. Это нечто совершенно бесполезное! Поэтому мы приводим алгоритм, основанный на знании того, что массив а упорядочен, т.е. удовлетворяет условию
Ak : 1? k < N : ak-1 ? ak
Основная идея — выбрать случайно некоторый элемент, предположим am, и сравнить его с аргументом поиска x. Если он равен x, то поиск заканчивается, если он меньше x, то мы заключаем, что все элементы с индексами, меньшими или равными m, можно исключить из дальнейшего поиска; если же он больше x, то исключаются индексы больше и равные m. Это соображение приводит нас к следующему алгоритму (он называется «поиском делением пополам»). Здесь две индексные переменные L и R отмечают соответственно левый и правый конец секции массива а, где еще может быть обнаружен требуемый элемент.
L := 0;
R := N-1;
found := FALSE;
WHILE (L Ј R) AND NOT found DO
m := любое значение между L и R;
IF a[m] = x THEN found := TRUE;
IF a[m] < x THEN L := m+1
ELSE R := m-1;
END;
END;
Инвариант цикла, т.е. условие, выполняющееся перед каждым шагом, таков:
(L ? R) AND (Ak : 0 ? k < L : ak < x) AND (Ak : R < k < N : ak > x)
из чего выводится результат
found OR ((L > R) AND (Ak : 0 ? k < L : ak < x) AND (Ak : R < k < N : ak > x))
откуда следует
(am = x) OR (Ak : 0 ? k < N : ak ? x)
Выбор m совершенно произволен в том смысле, что корректность алгоритма от него не зависит. Однако на его эффективность выбор влияет. Ясно, что наша задача — исключить на каждом шагу из дальнейшего поиска, каким бы ни был результат сравнения, как можно больше элементов. Оптимальным решением будет выбор среднего элемента, так как при этом в любом случае будет исключаться половина массива. В результате максимальное число сравнений равно log N, округленному до ближайшего целого. Таким образом, приведенный алгоритм существенно выигрывает по сравнению с линейным поиском, ведь там ожидаемое число сравнений — N/2.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Категория: Учебники