Лабораторный практикум по интеллектуальным информационным системам
|
Поэтому представляет интерес исследование семантической информационной модели, созданной на основе случайной обучающей выборки, в которой принадлежность анкет с описаниями объектов к классам и сам набор признаков в них – случайные.
Какая-то часть валидности обусловлена законами теории вероятностей, а какая-то – наличием закономерностей в предметной области и работой системы распознавания, причем в зависимости от параметров модели (размерности по классам и признакам и объема обучающей выборки).
Например, при увеличении объема выборки результат все ближе к предсказываемому теорией вероятностей. Но модель «борется» за повышение адекватности идентификации. И в результате получается валидность заметно выше, чем по теории вероятностей даже при довольно больших выборках.
Когда анализируешь величину интегральной валидности и оцениваешь ее в категориях «довольно хорошая», или «не достаточно высокая», то надо сравнивать ее с валидностью, получаемой по теории вероятностей. Например, если есть два класса, то валидность даже с неработающей системой распознавания должна быть 50% при равновероятных классах, а если классов 10, то валидность должна быть 10%. И только то, что свыше этого значения, предсказываемого теорией вероятности, можно отнести на счет закономерностей в предметной области и работы модели.
Если статистика мала и закон больших чисел не применим, то система «Эйдос» воспринимает шум как закономерности (причем даже иногда детерминистского характера, когда статистики вообще нет) и дает тем более высокую валидность модели, чем меньше статистика.
Получается, что о выявлении закономерностей в предметной области можно говорить только тогда, когда статистика достаточно велика, т.е. настолько велика, что модель может подавить или отсеять шум. Если бы в предметной области не было закономерностей (а был только шум), то валидность была бы близка с предсказываемой теорией вероятностей, но фактически она значительно выше.
При увеличении объема обучающей выборки:
Во-первых, валидность должна стремиться не к нулю, а к величине, предсказываемой теорией вероятностей для равновероятных событий. Можно, конечно, ввести некую величину (каузальная валидность), как разность фактической валидности в системе «Эйдос» и теоретически предсказанной по теории вероятностей. Вот она уже будет стремиться к нулю.
Во-вторых, свойства шума таковы, что эта каузальная валидность должна стремиться к нулю и при внутренней, и при внешней валидности. Это должно происходить просто по определению шума (корреляция белого шума с белым шумом равна нулю), и потому, что интегральный критерий сходства в модели представляет собой корреляцию.
Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
2 комментария
Dear Sir/Madam,
I need contact with person who create these LabWorks
best regards
Professor
Anara Saipbekova
Osh State University
Kyrgyz Republic
plese you can help me if you know односвязный кольцевой список java if you know plese send me program